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 

ABSTRACT 

 

Erlang distribution is a particular case of the gamma 

distribution and is often used in modeling queues, traffic 

congestion in wireless sensor networks, cell residence duration 

and finding the optimal queueing model to reduce the 

probability of blocking. The application is limited because of 

the unavailability of closed-form expression for the quantile 

(inverse cumulative distribution) function of the distribution. 

The problem is primarily tackled using approximation since 

the inversion method cannot be applied. This paper extended a 

six parameter quantile model earlier proposed to the 

Nakagami distribution to the Erlang distributions. 

Consequently, the established relationship between the two 

distributions is now extended to their quantile functions. The 

quantile model was used to fit the machine (R software) values 

with their corresponding quartiles in two ways. Firstly, 

artificial neural network (ANN) was used to establish that a 

curve fitting can be achieved. Lastly, differential evolution 

(DE) algorithm was used to minimize the errors obtained from 

the curve fitting and hence estimate the values of the six 

parameters of the quantile model that will ensure the best 

possible fit, for different values of the parameters that 

characterize Erlang distribution. Hence, the problem is 

constrained optimization in nature and the DE algorithm was 

able to find the different values of the parameters of the 

quantile model. The simulation result corroborates theoretical 

findings. The work is a welcome result for the quest for a 

universal quantile model that can be applied to different 

distributions.  

 

Key words: Artificial Neural Networks, Differential 

Evolution, curve fitting, Quantile function, Erlang; Nakagami; 

queue, statistics. 

 

1. INTRODUCTION 

 

Erlang distribution is often used in modeling queues. Out of 

all the probability functions that characterize a probability 

distribution, only the quantile function can be used in 

simulation, which connotes the quantile function can be used 

in lieu of the probability density function. The utilization of 

 
 

the distribution is limited because of the unavailability of the 

closed-form expressions of cumulative distribution (CDF) and 

quantile function (QF) of the distribution.  

The unavailability of the closed-form expression for the 

CDF and QF of the distribution primarily implies the 

following: the inversion method cannot be used to transform 

the CDF into QF [1] and the differentiation of the CDF cannot 

yield the PDF analytically. In this case, the QF cannot be used 

instead of the CDF [2] in recreating the distribution. In 

addition, the QF neither be recovered from the statistical 

moments [3-4] nor numerical inversion of the CDF [5-7].  

Approximation remains the only viable option to use in 

obtaining a function that closely resembles the closed-form 

expression for the QF. Approximation in this context is the use 

of numerical optimization, although other methods such as 

functional approximation, the use of series expansions are 

available [8-11].  

Numerical optimization is the selection of the optimum 

solution over several available candidate solutions in a given 

optimization problem. The CDF of Erlang distribution is 

intractable and its inversion to QF is computationally 

expensive and can be seen as a numerical optimization 

problem in general and as a constrained optimization problem 

in particular.  

To reduce the complexity of inverting the CDF, QF 

available in standard software can be fitted with given curves 

and the error between the fitted and the machine values can be 

minimized using some numerical optimization methods. The 

curve fitting is not simple as it seems because the QF has 

uneven orientation at the tail areas making it difficult for curve 

fitting. This becomes a multi-objective optimization problem, 

which can be handled using evolutionary computation 

methods. Differential evolution (DE) is one of such methods. 

Evolutionary computation methods are nature-inspired 

numerical optimization methods that are very capable of 

handling multi-objective and multi-modal problems amongst 

other NP-hard problems [12].    

This work used DE as a two-edged sword of firstly, fitting 

the machine values of the QF of Erlang distribution with a 

proposed curve and minimizing the error between the two 

functions. The result will be important in wireless 

communication because of the wide applicability of Erlang 

distribution in the area. Furthermore, the work becomes one of 
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interesting areas where differential evolution is applied in 

wireless networks and communications. 

 

2. LITERATURE REVIEW 

2.1 Erlang Distribution in Wireless Communication 

Erlang distribution has been applied extensively in wireless 

communications. Traditionally, the distribution was 

developed to model queues. In wireless communication, some 

systems are modeling with Queueing systems [13]. The 

recurring application of Erlang distribution in this context is in 

the modeling of traffic congestion in wireless sensor 

networks [14] which is sometimes referred to as teletraffic 

analysis [15]. Blocking is usually encountered problem in 

teletraffic analysis where telephone calls are either queued or 

lost. Erlang distribution is often applied in finding the optimal 

queueing model to reduce the probability of blocking 

[16], calculating the blocking probability [17], thereby, 

leading to effective resource and call management [18]. Aside 

from blocking, Erlang distribution, on the other hand, has been 

applied in outage detection [19]. Other similar applications 

are in modeling waiting times in public cloud [20], managing 

selfish nodes in ad hoc networks [21], optimal power 

allocation in channel [22] and others [23]. Erlang distribution 

is applied in modeling the vehicular traffic [24], which are 

often modeled and studied as networks [25]. Headway can be 

modelled using the Erlang distribution [26]. The distribution 

was used to model cell residence duration in an embedded 

Markov chain model [27] and the residual time of spectrum 

holes [28]. In addition, the distribution was used in the 

analysis of rain fades in radio networks [29]. 

2.2 Differential Evolution in Wireless Communication 

Evolutionary computation methods have been applied 

extensively in wireless communications. Prominent among the 

methods used in this context are genetic algorithm, differential 

evolution, ant bee colony and particle swarm optimization. 

The use of differential evolution is motivated by the nature of 

the problems arising in this area which are often modeled as 

multi-objective, multimodal or non-convex optimization 

problems, of which DE can handle effectively [30]. An 

example of a multi-objective problem is the case where DE 

was employed to optimize resource utilization, energy 

consumption and data transmission with security controls as 

constraints [31]. The multi-objective problem is known as 

deployment issues which include variables such as 

connectivity, coverage, lifetime, clustering and 

reliability [32], construction cost and total head loss in the 

network [33].  

Differential evolution has been used as a node localization 

algorithm whose solitary role is to find the optimal position of 

sensors with minimal cost [34]. Coverage area maximization 

is one major area where DE has consistently been applied in 

wireless networks. The coverage problem is usually modeled 

as a multi-objective constrained optimization problem. The 

highest possible coverage is determined which satisfies the 

variables and constraints that predispose the model [35]. 

Coverage area is usually optimized simultaneously with 

network energy leading to minimal energy consumption and 

maximum coverage area [36]. DE is applied as clustering 

algorithm in order to ensure minimal energy consumption and 

network resilience and sustainability [37]. Other applications 

can be seen in [38-40].  

 

3. MATERIALS AND METHODS 

 

The general steps taken to arrive at the result are given.  

a). Identify the probability distribution and explore possible 

models to be adapted (change the model) or adopted (apply the 

model unchanged).  

b). Obtain the exact (machine values) of the quantile function 

of the distribution. 

c). Use artificial neural networks to show that a curve is 

possible.  

d). Use the adapted model (for this research) to obtain the 

approximate values. 

e). Perform the curve fitting. 

f) Use Differential Evolution (DE) to reduce the error of the 

curve fitting. 

g). Read out the values of the parameters that provides the best 

fit. Note that RMSE close to zero or R square close to one 

indicate good fit.  

The steps are discussed in details.  

3.1 Identification of the Probability Distribution 

Erlang distribution is considered because of the intractable 

and non-differentiable nature of the CDF of the distribution. 

Intractability connotes that the inversion method cannot be 

used to explicitly transform the CDF to obtain the quantile 

functions of the respective distributions. Non-differentiability 

nature of the CDF means that the PDF of the distributions 

cannot be obtained analytically from the differentiation of the 

CDF. On the other hand, the CDF cannot be recovered from 

the integration of the PDF. 

The proposed quantile model in this paper is the same 

proposed for Nakagami distribution by [41]. The model will 

be extended to the Erlang distribution because of the link 

between the Nakagami and Gamma distributions of which the 

Erlang distribution is a particular case. The relationship 

between Gamma and Nakagami distributions were discussed 

by Huang [42]. Although, the relationship has long been in 

existence. 

 

Definition 

Given a random variable  Nakagami(m, )X    and 

 Gamma(k, )Y  . Define k m  and 
m




 , then 

2Y X or X Y . Gamma distribution of which 

Erlang distribution is a particular case is the square of 

Nakagami distribution. Alternatively, the Nakagami 

distribution is the square root of the Erlang distribution.                                                                                                                                          

It is on this fact that the result obtained for Nakagami 
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distribution in [41] can always be extended to the Erlang 

distribution.                                                                                         

3.2 Obtain the exact (machine) values of the quantile 

function of the distribution 

The machine values of the quantile function of Erlang 

distribution for different ordered and distinct quartiles are 

obtained from the R software using the same code. Any library 

can be declared because the quantile function of Erlang is 

similar to Gamma distribution.     

,  shape parameter = k,  

scale paramet

qgamm

er 

(

)

a

= 

p


                                                                                        

The Quantile function was obtained for p = 0.01, 0.02, …0.99. 

3.3 Model Adaption 

The relationship between the Nakagami and Erlang 

distributions is extended to their quantile approximation. 

Following the argument of [43-44] which are appreciably 

improvements over [45-46]. A six-parameter quantile model 

for Nakagami distribution earlier developed by [41] was 

adapted.   

The proposed six parameters Quantile model of the Erlang 

distributions is given by 
1

1 2 3

2 3

4 5 6

( ) tanh ( ) exp( )

        

Q p a p a p a

a p a p a p

  

  
 

       where the parameters 1 2 3 4 5, , , ,a a a a a and 6a  are 

chosen to minimize the error between the machine (R 

software) and the approximate quantiles. The cubic terms were 

added because of the relationship between the quantile 

function and cubic splines [47-48]. Graphically, the quantile 

function is similar to the cubic polynomial except that the 

domain of the quartiles is strictly non-negative and interval 

bounded between 0 and 1 while the domain of the support of 

the cubic polynomial can assume any interval and not 

necessarily non-negative. Finally, quantile approximations 

that are polynomial are usually effective in capturing the 

extreme quantiles of a given distribution [48-49]. 

3.4 Curve Fitting 

The steps outlined in the curve fitting does not guarantee a 

good fit until some methods are used to reduce the error 

inherent in the process.  

The inversion method is a process used to transform the 

CDF of probability distributions to its inverse CDF called the 

Quantile function. If that is possible, then, curve fitting is not 

desirable. Unfortunately, there are probability distributions 

whose QF cannot be easily obtained and that implies that the 

closed-form expressions are also available. Approximations 

become the only alternative and several methods have been 

discussed in the literature. One such method is the use of 

numerical algorithms.  

It could be noted that the early researchers in this area often 

apply one numerical method or algorithm. Currently, there 

seems to be a combination of different methods to improve the 

use of such methods. 

 

Manku et al. [50] submitted that regardless of the method, a 

good quantile approximation method or algorithm should be 

standalone; the approximation should be flexible and 

adjustable and compute in a single pass. Also, it should 

provide a platform of which all the quantile functions can be 

obtained for different quartile and at ease, utilize little 

computer memory and be simple to understand and code using 

different programming platforms.                                                                                                                                                                          

The nature of the quantile function is the reason why most 

curve estimation models failed, especially at the extreme tails 

of the distributions. Nonlinear model fit permits the user to 

define nonlinear equations that will guarantee a better quantile 

fit.  

Nonlinear curve fit can be defined as  ( ) ( )Q p f p  where  

( )f p can be linear addition or subtraction of sum or product 

of mathematical functions of the quartiles; such as 

trigonometric, hyperbolic, exponential, and logarithmic and so 

on.   

The initial results are often refined by using numerical or 

numerical optimization methods. This can be in the form of 

experimental nonlinear model fit or Probability distribution 

nonlinear model fit.  

3.5 Application of Differential Evolution 

Nonlinear probability fit was employed using the proposed 

model. The errors emanating from the curve fitting is reduced 

using differential evolution (DE). Details on DE as one of the 

robust evolutionary algorithm can be seen in [51-55].  

This is the most basic form of the DE algorithm, which has 

been modified serially to yield different variants. The 

algorithm works like this:                                                                                                                                 

A population of candidate solutions (called vectors) is 

initialized and moved around in the search space by using the 

mathematical formulae defined for the objective function to 

combine the positions of existing vectors from the population 

using a combination of uniform distribution, amplitude factor 

and crossover rate.  

Algorithm 1: Basic DE Algorithm 

   Initialization 

   Evaluation 

   do while (termination criteria are met) 

        Mutation 

        Crossover 

        Evaluation 

        Selection 

   end do while 

If the new position of the vector is an improvement, then it is 

accepted and promoted to form part of the population.  

Otherwise, the new position is simply discarded and 

sometimes archived. The process is repeated t times until a 

satisfactory solution is discovered. DE algorithm does not 

guarantee that an optimal (exact) solution will be found just 

like other evolutionary computational methods.     

3.6 Root Mean Square Error 

The root mean square root (RMSE) is used to calculate the 

extent to which the model was able to fit the exact (R software 
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values). It is one of the most widely used performance metrics 

in this context. Smaller values of RMSE values are desirable 

as they mean that the proposed model performs well. The 

RMSE is given as;                 

 

2

1

(  )
k

i

R value Approximate

RMSE
k








 

RMSE values range from 0 to 1. Values close to zero are 

desirable as it indicates an effective fit. This can be used to 

assess and compare the quality of different models against a 

reference model.  

3.7 Nature of the Problem 

  The problem is a constrained optimization problem. 

The proposed model is a non-linear optimization problem 

which can be defined as:                

Minimize ( ) :Q P P S                                          

Subject to (0.01,0.02,...,0.99)P S                                                           

Where S is defined by;                                

 ( ) 0,  1,2,...,jg P j l                                                                                                        

which is the number of inequality constraints (to be defined 

later)            
 ( ) 0,  1,2,...,kh P k m                                                                                              

which is the number of equality constraints (to be defined 

later)         
 0.01 0.99 ( 1,2,...,99)ip i                                                                                     

The idea is to obtain a feasible solution that satisfies all the 

constraints (inequality and equality). Any violation of one 

constraint yields infeasible solution.                                                                                  

A solution Q(P) is feasible if the two conditions are met  
   ( ) 0,  1,2,...,jg P j l         

 ( ) 0,  1,2,...,kh P k m                                                                                 

The general form of the solution imply that equality are 

converted to equality and   set at the value of 0.0001. A useful 

measure often used in this type of problem is called the 

average constraint violation, which is defined as; 

1 1

( ) ( )
l m

j k

j k

G P H P

v
l m

 






 
                                                                                           

Where;          

 ( )  if ( ) 0
( )

0          if ( ) 0

j j

j

j

g P g P
G P

g P


 



     

 ( )   if ( )  0
( )

0          if ( )  0

k k

k

k

h P h P
H P

h P





  
 

 

 

A near zero value of the average constraint violation is highly 

desirable.  

The idea of using DE is to allow newly generated solutions to 

be selected to influence the selection directions of the 

offspring in the current generation and to speed up the 

convergence. This is based on three necessary rules:  

a). Between two feasible vectors (candidate solutions), the one 

with the best value of the objective function is preferred and 

promoted to the next generation.  

b). If one vector is feasible and the other one is infeasible, the 

feasible one is preferred and promoted to the next generation. 

c). Between two infeasible vectors, the one with the lowest 

sum of the constraint violation is preferred.                                                                     

Besides the aforementioned rules, equality constraints were 

converted to inequality by using the following tolerance value, 

  = 0.0001.    

3.8 Problem Specification 

     The following are the detailed specifications of the 

problem used in DE to obtain the results for each parameter of 

the distribution. 

a). Dimension of the problem: 99. 

b). Type of function: The objective function is a nonlinear 

function given as:  

       
1

1 2 3

2 3

4 5 6

( ) tanh ( ) exp( )

        

Q p a p a p a

a p a p a p

  

  
                                                                        

c). Number of equality constraints: None. 

d). Number of inequality constraints: Seven, they are listed as 

follows; 0 1p  and collectively;  

 
1 2 3 4 5 6, , , , ,a a a a a a   .                                                                                               

e). Number of active constraints: one that is the quartiles p.  

f). The termination criterion/criteria is/are defined: These are 

defined to facilitate convergence. In this case, it is defined as; 
                    *( ) ( )i iQ p Q p                                                                                 

The termination criterion is defined and can happen when 

there is no appreciable difference between the parent and the 

offspring for some iteration X.                                                     

Consequently, it implies that the parameters that ensure a 

minimum error between the exact and the approximate are 

obtained for some .  That is the feasible solution exist when; 

* * *

1 1 2 2 6 6, ,...,i i i i i ia a a a a a                                                                                     

Also, the process terminates when the quartiles lies outside the 

given range.  

 

4. RESULTS 

4.1 Initial Model Verification using Neural Network 

 Neural network training was applied to precipitate the 

initial nature in graphic form of the machine values of the 

quantile function through fitting. The training done using 

MATLAB software revealed that a general model could be 

obtained. Some applications of neural network in wireless 

communications can be seen in [56-59].  
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Figure 1 a: The Output versus input curve for the quantile 

function of both shape and scale parameter equals one. 
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Figure 1 b: ANN Model fit summary 
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Figure 2: Comparison between the Machine and Approximate 

values for Erlang (5, 1) 

The output is the machine values where the input is the 

quartiles. The training algorithm used is the 

Levenberg-Marquardt algorithm and is shown in Figures 

1a and b. The nature of the curve in Figure 1 is synonymous 

with the quantile function of Erlang distribution. The values of 

R in Figure 1 b indicate an almost perfect fit. 

 

 

 

 

 

 

4.2 Main Results 

      The machine values of the Erlang distribution were fitted 

with their quartile using the proposed quantile model for 

degrees of freedom (k), 1 to 15 and scale parameter (λ) equals 

one only. Other scale parameters are multiples of the scale 

parameter of one. It should be noted that the distribution is 

supported by two parameters. The values of the six parameters 

and the RMSE obtained using the differential evolution to 

minimize the error of the quantile model are presented 

in Table 1. The plots that showed how the model performed 

against the machine values are shown in Figures 2 and 3. The 

quantile function of other scale parameters of the distribution 

for any shape parameter is multiple of one. 

 

A close look at the figures showed that the precision reduces 

as the values of the shape parameter increase and hence the 

distance between the machine and approximate widens 

from Figures 2 and 3. This is corroborated with the decreasing 

values of RMSE in Table 1 and the result is desirable since 

approximations are often very difficult at low values of shape 

parameters of probability distributions. In addition, the near 

zero RMSE value obtained when the shape parameter equals 

to one is expected since Erlang distribution and by extension, 

the gamma distribution have closed form expressions there.  

 

4.3 Simulation 

Quantile function generates non-uniform variates using the 

uniform random variables. The quartile (p) in the Quantile 

model is replaced with standard uniform distribution and is 

used to generate non-uniform random variables with a 

population size of 10,000.  
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Figure 3: Comparison between the Machine and 

 Approximate values for Erlang (14, 1) 

EQI = The machine value of the lower quartile. SQI = The 

average of the simulated value of the lower quartile obtained 

using the new quantile model. EQ2 = The machine value of the 

median. SQ2 = The average of the simulated value of the 

median obtained using the new quantile model. EQ3 = The 

machine value of the upper quartile. SQ3 = The average of the 

simulated value of the upper quartile obtained using the new  

quantile model. 
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Table 1: The estimates of the parameters of the quantile model of Erlang 

 distribution for shape parameter equal 1 to 15 and scale parameter equals one 

       RMSE 

1 1.999426 0.885764 -0.88593 -1.88007 0.016987 -0.35035 3.61E-05 

2 2.359142 -34.9766 35.12954 36.67837 12.94206 10.73063 0.007409 

3 2.660176 -78.6911 79.16279 82.94576 29.28917 23.89266 0.016676 

4 2.921711 -120.043 120.9354 126.5696 44.87536 36.27293 0.025581 

5 3.15554 -158.308 159.6875 166.8805 59.34531 47.70107 0.033883 

6 3.368779 -193.829 195.7455 204.274 72.8021 58.29597 0.041621 

7 3.56600 -227.032 229.5223 239.2108 85.39468 68.19114 0.048872 

8 3.75032 -258.278 261.3716 272.078 97.25409 77.49773 0.055708 

9 3.923967 -287.856 291.5773 303.1838 108.4867 86.30391 0.062187 

10 4.088598 -315.997 320.3655 332.7724 119.1778 94.67937 0.068356 

11 4.245483 -342.884 347.9175 361.0392 129.396 102.6798 0.074254 

12 4.395619 -368.667 374.3807 388.1425 139.1972 110.3502 0.079913 

13 4.539807 -393.469 399.8758 414.2122 148.6275 117.7274 0.085358 

14 4.678703 -417.392 424.5037 439.3561 157.7253 124.8423 0.090613 

15 4.812849 -440.522 448.3489 463.6649 166.5228 131.7205 0.095695 

 

Table 2: Simulation Results for Erlang Distribution 

  EQ1 SQ1 EQ2 SQ2 EQ3 SQ3 

1 1 0.2876 0.2855 0.6931 0.6986 1.3862 1.3826 

2 1 0.9612 0.9629 1.6783 1.6735 2.6926 2.69 

3 1 1.7273 1.7349 2.674 2.677 3.9204 3.92 

4 1 2.5353 2.5495 3.672 3.6734 5.1094 5.1123 

5 1 3.3686 3.3874 4.6709 4.6686 6.2744 6.2779 

6 1 4.2192 4.2438 5.6701 5.6663 7.4227 7.429 

7 1 5.0826 5.1122 6.6696 6.6637 8.5584 8.5668 

8 1 5.9561 5.9904 7.6692 7.6613 9.6844 9.6946 

9 1 6.8376 6.8767 8.6689 8.6594 10.8024 10.8148 

10 1 7.7258 7.7685 9.6687 9.6564 11.9138 11.9268 

11 1 8.6198 8.666 10.6685 10.654 13.0196 13.034 

12 1 9.5186 9.569 11.6684 11.653 14.0005 14.137 

13 1 10.4217 10.476 12.6682 12.651 15.2173 15.235 

14 1 11.3286 11.387 13.6681 13.65 16.3102 16.33 

15 1 12.2388 12.301 14.668 14.648 17.3999 17.421 

The machine and the simulated values of the estimates of 

the first, second and third quartiles were presented for some 

selected values of the distribution for the sole purpose of 

comparison of the extent of which the proposed quantile 

model was able to recreate the first, second (median) and third 

quartiles respectively.  

    The result of the comparison for some selected values of 

both parameters that support the Erlang distribution is 

presented in Table 2 and graphically in Figures 4 and 5 for 

some selected parameters.  

 

It can be seen from Figures 4 and 5 that the quantile model 

proposed in this work was able to recreate the distribution. The 

distribution is heavy-tailed as seen in the values of the  

skewness. The decreasing value of A squared statistic 

connotes approximation to normality. In addition, the 

accuracy of the Quantile model increases with a decreasing 

value of the shape parameters of the respective distributions. 

A further investigation of the behavior of the random 

variables generated using the new quantile model is required 

to prove that the random variables are not from the normal 

distribution. 
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1st Quartile 0.9629

Median 1.6835

3rd Quartile 2.6900

Maximum 6.6476

1.9403 1.9912

1.6511 1.7161

1.2812 1.3172

A-Squared 190.40

P-Value <0.005

Mean 1.9657

StDev 1.2990

Variance 1.6874

Skewness 1.00385

Kurtosis 0.69352

N 10000

Minimum 0.1936

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

6.35.44.53.62.71.80.9

Median

Mean

2.01.91.81.7

95% Confidence Intervals

  
Figure 4: Simulation Result for Erlang (2, 1) 

  

1st Quartile 4.2438

Median 5.6663

3rd Quartile 7.4290

Maximum 13.1663

5.9164 6.0064

5.6074 5.7255

2.2634 2.3270

A-Squared 61.47

P-Value <0.005

Mean 5.9614

StDev 2.2948

Variance 5.2660

Skewness 0.571167

Kurtosis -0.100967

N 10000

Minimum 2.0538

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

12.811.29.68.06.44.83.2

Median

Mean

6.05.95.85.75.6

95% Confidence Intervals

 
 

Figure 5: Simulation Result for Erlang (6, 1) 

    To achieve this, the values of the skewness and Kurtosis 

obtained from the simulation result for the two distributions 

are interpreted. The values are culled from Figures 4 and 5 and 

other selected parameters. The detailed summary is presented 

in Table 3.                                                                                                                          

Table 3:  Summary of the Skewness 

and Kurtosis from the Simulated Results 

k    Skewness Kurtosis 

2 1 1.0000  0.6935 

6 1 0.5712  -0.1010 

8 1  0.4917  -0.2023 

11 1 0.4162  -0.2860 

15 1  0.3535  -0.3463 

 

    It can be seen that the skewness (a measure of symmetry) 

tends towards zero as the value of the shape parameter 

increases. Apart from tending to normality, the tails of the 

distributions point to the right. This is consistent with the 

properties of the distributions now recreated using the newly 

developed quantile model. Erlang distribution is an example of 

distributions with positive skewness. It can also be noticed that 

the Kurtosis (a measure of the nature of tails) decreases as the 

value of the shape parameter increases. The increasing values 

of the negative Kurtosis imply that the tails of the two 

distributions become lighter when compared with the normal 

distribution as the value of the shape parameter increases. This 

equally corroborates theoretical findings. Although the values 

of distribution will continue to cluster in the center as the 

values of the shape parameter increases, the tails become 

lighter than the normal. This is an indication that the 

distribution is not from the normal distribution. 

6. CONCLUSION 

A six-parameter Quantile model developed for the 

Nakagami distribution has been extended to the Erlang 

distribution. Differential Evolution algorithm was very 

effective in optimization of coefficients that provide the best 

available fit on the machine values. The quantile model can be 

used as the closed form expression for the inverse cumulative 

function of Erlang, Gamma and Nakagami distributions. 

Simulation done using the model yielded estimates closed to 

the machine values. Different areas of wireless 

communications will benefit immensely from this work 

especially the areas of queuing and modeling fading channels. 

Furthermore, different evolutionary computational methods 

can be applied in lieu of the differential evolution [60-64]. 
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